

العلوم الحياتية

الصف التاسع - كتاب الأنشطة والتجارب العملية الفصل الدراسي الأول

9

فريق التأليف

د. موسى عطا الله الطراونة (رئيسًا)

أحمد محمد القطاونة ختام خليل سالم

محمد أحمد أبوصيام نداء فضل طه

روناهي "محمد صالح" الكردي (منسقًا)

الناشر: المركز الوطني لتطوير المناهج

يسر المركز الوطني لتطوير المناهج استقبال آرائكم وملحوظاتكم على هذا الكتاب عن طريق العناوين الآتية:

06-5376262 / 237 🖨 06-5376266 🔯 P.O.Box: 2088 Amman 11941

قرَّرت وزارة التربية والتعليم تدريس هذا الكتاب في مدارس المملكة الأردنية الهاشمية جميعها، بناءً على قرار المجلس الأعلى للمركز الوطني لتطوير المناهج في جلسته رقم (2022/49)، تاريخ 2022/6/19 م، وقرار مجلس التربية والتعليم رقم (2022/49)، تاريخ 2022/7/6 م، بدءًا من العام الدراسي 2022/2022 م.

- © HarperCollins Publishers Limited 2022.
- Prepared Originally in English for the National Center for Curriculum Development. Amman Jordan
- Translated to Arabic, adapted, customised and published by the National Center for Curriculum Development. Amman Jordan

ISBN: 978 - 9923 - 41 - 485 - 9

المملكة الأردنية الهاشمية رقم الإيداع لدى دائرة المكتبة الوطنية (2023/5/2565)

بيانات الفهرسة الأولية للكتاب:

عنوان الكتاب العلوم الحياتية/كتاب الأنشطة والتجارب العملية الصف التاسع الفصل الدراسي الأول

إعداد / هيئة الأردن. المركز الوطني لتطوير المناهج

بيانات النشر عمان: المركز الوطني لتطوير المناهج، 2023

رقم التصنيف 375.001

الواصفات / تطوير المناهج/ / المقررات الدراسية / / مستويات التعليم / / المناهج/

الطبعة الأولى

يتحمل المؤلف كامل المسؤولية القانونية عن محتوى مصنفه ولا يعبّر هذا المصنف عن رأى دائرة المكتبة الوطنية.

All rights reserved. No part of this publication may be reproduced, sorted in retrieval system, or transmitted in any form by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Barnard's Inn, 86 Fetter Lane, London, EC4A 1EN.

British Library Cataloguing -in- Publication Data

A catalogue record for this publication is available from the Library.

1443 هــ / 2022 م 2023 م – 2025 م الطبعة الأولى (التجريبية) أُعيدت طباعته

قائمةُ المحتوياتِ

رقم الصفحة	الموضوعُ
	الوحدةُ 1: دراسةُ الحياةِ
4	تجربةٌ استهلاليةٌ: دراسةُ تأثيرِ درجةِ الحرارةِ في نموِّ عفنِ الخبزِ
7	نشاطٌ: أثرُ الضوءِ في اتجاهِ نموِّ النباتاتِ
9	نشاطٌ إثرائيٌّ: التحقُّقُ منْ تأثيرِ المطرِ الحمضيِّ في نموِّ النباتاتِ باستخدامِ نباتِ الرشادِ
12	نشاطٌ إثرائيٌّ: ملاحظةُ الخصائصِ الأساسيةِ للكائناتِ الحيَّةِ
15	نشاطٌ إثرائيٌّ: دراسةُ أشكالِ الحياةِ في نظامٍ بيئيًّ
17	أسئلةُ اختباراتٍ دوليةٍ أوْ على نمطِها
	الوحدةُ 2: الخليةُ وعملياتُها الحيويةُ
24	تجربةٌ استهلاليةٌ: دراسةُ خلايا نباتيةٍ وحيوانيةٍ باستخدامِ المِجهَرِ الضوئيِّ المُركَّبِ
27	نشاطٌ إثرائيٌّ: تركيبُ الغشاءِ البلازميِّ وخاصيةُ النفاذيةِ الاختياريةِ
28	نشاطٌ إثرائيٌّ: البلاستيداتُ عديمةُ اللونِ المُخرِّنةُ للنشا
30	نشاطٌ: دراسةُ أثرِ درجةِ الحرارةِ في عمليةِ الانتشارِ
32	نشاطٌ إثرائيٌّ: دراسةُ أثرِ تراكيزَ مختلفةٍ منْ محلولِ الغلوكوزِ في كتلةِ البطاطا
35	نشاطٌ إثرائيٌّ: الكشفُ عنْ غازِ ثاني أكسيدِ الكربونِ الناتجِ منْ عمليةِ التنفُّسِ الخلويِّ
38	نشاطٌ إثرائيٌّ: الكشفُ عنِ النشا
40	أسئلةُ اختباراتٍ دوليةٍ أوْ على نمطِها

ُ تجربة استهلالية

حراسةُ تأثير حرجة الحرارة في نموٍّ عفن الخبز

الخلفيةُ العلميةُ:

تُؤتِّرُ عواملُ عديدةٌ في نموِّ عفنِ الخبزِ، أهمُّها: درجةُ الحرارةِ، ونسبةُ الرطوبةِ، وشِدَّةُ الإضاءةِ.

الهدفُ:

تعرُّفُ أثرِ درجةِ الحرارةِ في نموِّ عفنِ الخبزِ.

الموادُّ والأدواتُ:

(3) قطعٍ منَ الخبزِ حجمُها متساوٍ، سكِّينٌ، (3) أكياسٍ بلاستيكيةٍ شفَّافةٍ قابلةٍ للغلقِ، ماءٌ، قطَّارةٌ، مقياسُ درجةِ حرارةٍ، قفّازاتٌ، مسطرةٌ، قلمٌ.

أصوغُ فرضيتي عن أثرِ درجَةِ الحرارةِ في نموّ عَفَنِ الخُبْز.

إرشاداتُ السلامةِ:

- ر استعمالُ السكِّين وعيِّناتِ التجربةِ بحذرِ.
- التخلُّصُ منَ الأكياسِ التي تحوي الخبزَ المُتعفِّنَ بصورةٍ صحيحةٍ.
 - ملحوظةٌ: يتطلَّبُ تنفيذُ التجربةِ وقتًا طويلًا.

أختَبرُ فَرضِيتي:

1. أُسجِّلُ توقُّعي بخصوصِ تأثيرِ درجةِ الحرارةِ في نموِّ فطرِ عفنِ الخبزِ.

ع و ر پ پ پ د ک د د ک د د ک د د ک د د ک د د ک د د ک د د ک د د ک د د ک د د ک د د ک د د ک د د ک د د ک د د ک د د ک

- 2. أرسم على كلِّ كيسٍ شبكةً منَ المُربَّعاتِ، طولُ ضلع كلِّ مُربَّعِ منْها 1cm.
- 3. أُجرِّبُ: أُبلِّلُ كلَّ قطعةِ خبزٍ بِـ (5) قطراتٍ منَ الماءِ، ثمَّ أضعُ كُلَّا منْها في كيسٍ شفّافٍ أُحكِمُ إغلاقَهُ بعدَ تفريغِهِ منْ كمِّيةِ الهواءِ التي في داخلِهِ.
- 4. أضبطُ المُتغيِّراتِ: أضعُ أحدَ الأكياسِ الثلاثةِ خلفَ الدرجِ الأخيرِ منَ الثلّاجةِ؛ منعًا لوصولِ الضوءِ النهِ، ثمَّ أضعُ كيسًا ثانيًا في خزانةٍ مُظلِمةٍ مُراعِيًا عدمَ فتجها. أمّا الكيسُ الثالثُ فأضعُهُ في مكانٍ دافئٍ ومُظلِم.

الوحدةُ 1: دراسةُ الحياةِ.

5. أُدوِّنُ بياناتي: أُدوِّنُ درجةَ الحرارةِ في كلِّ منَ الأماكنِ الثلاثةِ التي وضعْتُ فيها الأكياسَ.

درجةُ الحرارةِ	البيئةُ
	الثلّاجةُ
	الخزانةُ المُظلِمةُ
	المكانُ الدافئُ المُظلِمُ

- ألاحِظُ: أتفحَّصُ الأكياسَ الثلاثة كلَّ (3) أيامٍ مدَّة (9) أيامٍ، مُدوِّنًا ملاحظاتي.
 الأيامُ الثلاثةُ الأولى:
 الأيامُ الثلاثةُ الثانيةُ:
 الأيامُ الثلاثةُ الثالثةُ:
- 7. أحسُبُ: أرتدي قفّازينِ، ثمَّ أُخرِجُ الأكياسَ التي تحوي الخبزَ بعدَ انتهاءِ الوقتِ المُخصَّصِ للتجربةِ، ثمَّ أَعُدُّ عددَ المُربَّعاتِ التي يظهرُ أسفلَها نموُّ الفطرِ على نحوٍ يملأُ نصفَ المُربَّع على الأقلِّ. أمّا المُربَّعاتُ التي يكونُ نموُّ الفطرِ أسفلَها أقلَّ منْ ذلكَ فلا تُحسَبُ.

8. أُدوِّنُ نتائجي في جدولٍ.

عددُ المُربَّعاتِ	البيئةُ
	الثلّاجةُ
	الخزانةُ المُظلِمةُ
	المكانُ الدافئُ المُظلِمُ

التحليلُ والاستنتاجُ:

	ضلَ).
ضَلَ خلالَ أسبوعٍ واحدٍ.	دُ درجةَ الحرارةِ التي أسهمَتْ في نموِّ عفنِ الخبزِ على نحوٍ أف
	حُ أثرَ تغيُّرِ درجةِ الحرارةِ في نموِّ عفنِ الخبزِ، ثمَّ أُ قا رِنُ ذلكَ بـ

4. أُصِدِرُ حُكمًا في ما إذا توافقت نَتائِجي مع فَرضِّيتي أم لا.

الوحدةُ 1: دراسةُ الحياةِ.

الخلفيةُ العلميةُ:

توجدُ عواملُ عديدةٌ تُؤثِّرُ في اتجاهِ نموِّ النباتاتِ، منْها عواملُ فيزيائيةٌ مثلُ الرياحِ، وأُخرى كيميائيةٌ مثلُ الهرموناتِ النباتيةِ التي يتأثَّرُ بعضُها بالضوء.

الهدف:

تطبيقُ المنهجيةِ العلميةِ بدراسةِ تأثيرِ الضوءِ في اتجاهِ نموِّ النباتاتِ.

خطوات العملِ:

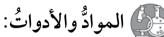
حطوات العملِ: 1. أصوغُ فرضيةً عنْ أثرِ الضوءِ في اتجاهِ نموِّ النباتاتِ، ثمَّ أستخلصُ منْها تنبُّؤًا قابلًا للاختبارِ.	
2. أُحدِّدُ العيِّنةَ التجريبيةَ، والعيِّنةَ الضابطةَ. العيِّنةُ التجريبيةُ:	
العيِّنةُ الضابطةُ:	
 3. أضبطُ المُتغيِّراتِ: أُحدّد المُتغيِّرِ المستقلِّ، والمُتغيِّرِ التابعِ، والعواملِ التي يتعيَّنُ تثبيتُها. المُتغيِّرُ المستقلُّ:	
الْمُتغيِّرُ التابعُ:	
العواملُ المُثبَّتةُ:	
4. أُوضِّحُ آليَّةَ ضبطِ مُتغيِّراتِ التجربةِ.	

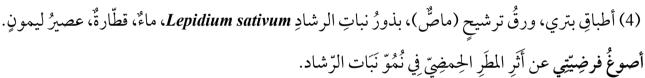
التواصلُ

أعرضُ ما توصَّلْتُ إليه على مُعلِّمي. وبعدَ الموافقةِ على ما سبقَ، أبدأُ تنفيذَ التجربةِ معَ زملائي/ زميلاتي في المجموعةِ، ثمَّ أُحلِّلُ النتائجَ، وأُعمِّمُها على طلبةِ الصفِّ بصورةٍ مناسبةٍ، ثمَّ أُجيبُ عنْ أسئلتِهِمْ.

ملحوظةٌ: أُصمِّمُ تجربةً مضبوطةً عنْ أثرِ الضوءِ في اتجاهِ نموِّ النباتاتِ باتِّباعِ الخطواتِ السابقةِ.

الوحدةُ 1: دراسةُ الحياةِ.

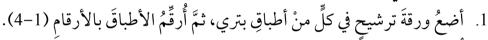

ِالتَحَقُّقُ مِنْ تَأْثِيرِ المطرِ الحمضيِّ في نموِّ النباتاتِ باستخدامِ نباتِ الرشادِ

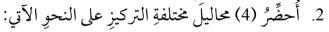

نشاطً إثرائيًّ

الخلفيةُ العلميةُ:

درسَ العلماءُ ظاهرةَ المطرِ الحمضيِّ في خمسينياتِ القرنِ العشرينَ الميلاديِّ، ثمَّ اعتُرِفَ بها في عقدِ الستيناتِ وأوائلِ عقدِ السبعيناتِ بسببِ إضرارِها بالمحاصيلِ في أوروبا الغربيةِ وشرقِ أمريكا الشماليةِ. تحتوي الأمطارُ الحمضيةُ على بعضِ الحموضِ، مثل: حمضِ الكبريتيكِ، وحمضِ النيتريكِ، وحمضِ الكربونيكِ.

الهدفُ: تطبيقُ المنهجيةِ العلميةِ بدراسةِ تأثيرِ المطرِ الحمضيِّ في نموِّ نباتِ الرشادِ.





إرشادات السلامة:

- غسلُ الأيدي جيدًا بعدَ الانتهاءِ منَ التجربةِ.

اختبرُ فرضيّتي:

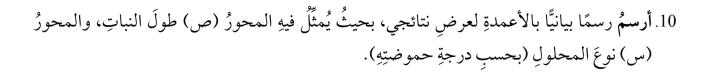
ب- عصير ليمونٍ صافٍ.

جـ- عصيرُ ليمونٍ وماءٌ بنسبةِ 1:1.

د- عصيرُ ليمونٍ وماءٌ بنسبةِ 1:10.

- 3. أضعُ (10) بذورٍ منْ حَبِّ الرشادِ فوقَ ورقةِ الترشيحِ في كلِّ منْ أطباقِ بتري.
- 4. أُضيفُ (10) قطراتٍ منَ المحلولِ (أ) إلى الطبقِ رقمِ (1)، وَ (10) قطراتٍ منَ المحلولِ (ب) إلى الطبقِ رقمِ (2)،
 وَ (10) قطراتٍ منَ المحلولِ (ج) إلى الطبقِ رقمِ (3)، وَ (10) قطراتٍ منَ المحلولِ (د) إلى الطبقِ رقمِ (4).
 - 5. أضعُ الأطباقَ على حافَةِ نافذةٍ دافئةٍ، ثمَّ أتركُها مدَّةَ أسبوعينِ.
 - 6. أُضيفُ (10) قطراتٍ منَ المحلولِ المُخصَّصِ لكلِّ طبقٍ يوميًّا.

- 7. أقيسُ طولَ كلِّ نبتةِ رشادٍ ناميةٍ بعدَ أسبوعٍ، ثمَّ أقيسُ طولَ كلِّ منْها بعدَ أسبوعينِ.
 8. أُدوِّنُ النتائجَ في جدولٍ، ثمَّ أُدوِّنُ أيَّةَ ملاحظاتٍ أُخرى عنْ نموِّ نباتِ الرشادِ في كلِّ طبقٍ.


طولُ كلِّ نبتةٍ بعدَ أسبوعينِ (cm)												بوعٍ	دَ أسر	يتةٍ بع cm)	کلِّ نب (۱)	لولُ [']	•			نوعُ المحلولِ
10	9	8	7	6	5	4	3	2	1	10	9	8	7	6	5	4	3	2	1	
																				ĺ
																				ب
																				ج
																				د

ملحوظاتٌ عنْ نموِّ نباتِ الرشادِ في كلِّ طبق:

9. أحسُبُ متوسطَ طولِ نبتةِ الرشادِ في كلِّ محلولٍ بعدَ أسبوعِ وأسبوعينِ.

متوسطُ الأطوالِ (cm)			وعينِ	، أسبر	ةٍ بعدَ cm)	لِّلُ نبت (۱)	ولُ ک	ط			متوسطُ الطولِ (cm)		۽	أسبو	عدَ أ)	بتةٍ ب cm	ئلِّ ن <u>ـٰ</u> (ِلُ ک	طو			نوعُ المحلولِ
(cm)	10	9	8	7	6	5	4	3	2	1	(cm)	10	9	8	7	6	5	4	3	2	1	
																						ů.
																						·
																						ج
																						د

الوحدةُ 1: دراسةُ الحياةِ.

. أكتبُ تقريرًا يتضمَّنُ النتائجَ التي توصَّلْتُ إليْها عنْ تأثيرِ المطرِ الحمضيِّ في نموِّ نباتِ الرشادِ.	.11
. أبحثُ في مصادرِ المعرفةِ المناسبةِ عنْ تأثيرِ المطرِ الحمضيِّ في النباتاتِ، ثمَّ أُقارِنُ ذلكَ بما توصَّلْتُ إليْهِ منْ نتائجَ.	.12
. أُصدِرُ حُكمًا في ما إذا توافقت نَتائِجي مع فَرضًيتي أم لا.	13

التواصلُ

أعرضُ ما توصَّلْتُ إليهِ منْ نتائجَ على زملائي/ زميلاتي في الصفِّ.

الوحدةُ 1: دراسةُ الحياةِ.

نشاطٌ إثرائيُّ

ملاحظةُ الخصائص الأساسية للكائنات الحيَّة

الخلفيةُ العلميةُ:

تشتركُ الكائناتُ الحيَّةُ في خصائصَ أساسيةٍ عِدَّةٍ تُميِّزُها منَ الكائناتِ الميتةِ والموادِّ غيرِ الحيَّةِ.

الهدفُ:

ملاحظةُ خصائصِ الحياةِ لكائناتٍ حيَّةٍ مختلفةٍ.

إلموادُّ والأدواتُ:

جهازُ حاسوبٍ، أَوْ أَيُّ جهازِ عرضٍ مُتَّصِلِ بشبكةِ الإنترنتْ.

أصوغُ فرضيتي عن الخصائصِ المُشتركةِ بينَ الكائِناتِ الحَيّة.

إرشاداتُ السلامةِ:

أُخبِرُ مُعلِّمي/ مُعلِّمتي إذا كانَتْ إعداداتُ شاشةِ الجهازِ تُسبِّبُ لي إجهادًا أَوْ أَلمًا في العينِ؛ لمساعدتي على ضبطِ إعداداتِ الشاشةِ.

ملحوظةٌ: يُمكِنُ للمُعلِّمِ أوِ المُعلِّمةِ تنفيذُ هذا النشاطِ بعرضِ مقاطعَ منَ الفيديو، ثمَّ الطلبِ إلى كلِّ طالبٍ أوْ طالبةٍ تدوينَ خصيصةٍ منَ الخصائصِ المُلاحَظةِ في كلِّ مقطعٍ في جدولِ البياناتِ المُرفَقِ، ثمَّ تدوينَ الملاحظاتِ المُشاهَدةِ.

أختبرُ فرضيّتي:

- 1. أُنشِئُ جدولَ بياناتٍ باستخدامِ جهازِ الحاسوبِ، أَوْ أستخدمُ جهازَ العرضِ لمشاهدةِ أحدِ مقاطعِ الفيديو.
- 2. أُدوِّنُ خصيصةً أَوْ أكثرَ منَ الخصائصِ التي أُلاحِظُها في كلِّ مجموعةٍ، ثمَّ أَصِفُ أهميتَها، وأتوقَّعُ ما سيحدثُ للكائنِ الحيِّ في حالِ فَقَدَ إحدى هذهِ الخصائصِ. بعدَ ذلكَ أُدوِّنُ النتائجَ التي توصَّلْتُ إليْها في جدولِ البياناتِ الآتي:

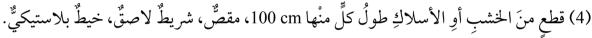
توقَّعي لِما سيحدثُ للكائنِ الحيِّ عندَ فقدانِهِ إحدى خصائصِ الحياةِ (أذكرُ ذلكَ مُفصَّلًا)	أهميةُ خصيصةِ (خصائصِ) الحياةِ التي أُلاحِظُها	خصيصة (خصائص) الحياة التي ألاحِظُها	عنوانُ مقطعِ الفيديو
			عمليةُ الإخصابِ لحيوانِ نجمِ البحرِ Video: Sea urchin fertilization
			انقسامُ خلایا نجمِ البحرِ Video: Sea urchin cell division
			تركيبُ الخليةِ ووظائفُها: خلايا أوراقِ نباتِ الإلوديا Video: Elodea leaf cells
			حركةُ الأميبا Video: Crawling Amoeba
			نموُّ سمكِ الدانو المُخطَّطِ Video: Zebrafish develop- ment

	أكتبُ تقريرًا يتضمَّنُ النتائجَ التي توصَّلْتُ إليْها، ثمَّ أقرأُهُ أمامَ زملائي/ زميلاتي في الصفِّ.
٥	عليلُ والاستنتاجُ: أُفسِّرُ أهميةَ خصيصةِ التكاثرِ للكائناتِ الحيَّةِ جميعِها.
i 1	الفيروساتُ جَسَيْماتُ مُعْدِيَةٌ لاخلويةٌ، وهيَ تتألَّفُ منْ مادةٍ وراثيةٍ محاطةٍ بغلافٍ خارجيٍّ مزَ البروتيناتِ، ولا تتكاثرُ إلّا بمساعدةِ البروتيناتِ وإنزيماتِ الخلايا الحيَّةِ التي تدخلُها. بناءً على ما تعلَّمْتُهُ عنْها، أستنتجُ سببًا لعدمِ عَدِّ الفيروساتِ كائناتٍ حيَّةً.
1 .3	أتوقّعُ: ماذا يحدثُ للكائنِ الحيِّ إذا فَقَدَ خصيصةَ الحركةِ؟
٤ . أُد	صِدِرُ حُكمًا: أُوضَّحُ ما إذا كانت نتائجي تتوافق مع فرضيتي.

دراسةُ أشكال الحياة في نظام بيئيٍّ

نشاطً إثرائيًّ

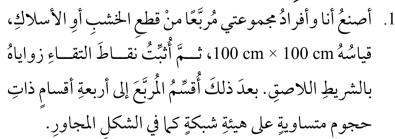
الخلفيةُ العلميةُ:

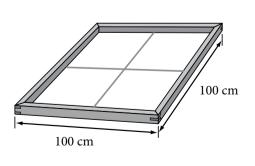

يحرصُ الباحثونَ وعلماءُ العلومِ الحياتيةِ على عملِ دراساتٍ ميدانيةٍ عنْ أشكالِ الحياةِ في البيئاتِ المختلفةِ، ثمَّ تحليلِها بطرائقَ علميةٍ؛ بُغْيَةَ تقييمِ سلامةِ النظامِ البيئيِّ، وإيجادِ الحلولِ المناسبةِ في حالِ اكتشافِ مشكلاتٍ في التنوُّعِ الحيويِّ لهذا النظامِ.

الهدفُ:

محاكاةُ دراسةِ أشكالِ الحياةِ في البيئاتِ المختلفةِ.

ملحوظةٌ: يُنفَّذُ النشاطُ في مجموعاتٍ، تضمُّ كلُّ منْها (3-4) طلبةٍ.


الموادُّ والأدواتُ:

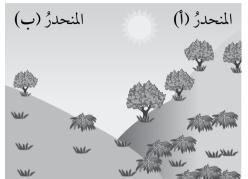


ارشاداتُ السلامةِ:

- استعمالُ الأدواتِ بحذرٍ.
- الالتزامُ بتعليهاتِ مُعلِّمي/ مُعلِّمتي.
 - المحافظةُ على مظاهر الحياةِ البرِّيةِ.

🛣 خطواتُ العملِ:

- 2. أُحدِّدُ مساحةً منْ قطعةِ الأرضِ التي سأعملُ فيها، والتي قدْ تكونُ حديقةَ المدرسةِ، أوْ منَ البيئةِ القريبةِ، ثمَّ أبحثُ في أنحائِها، مُحدِّدًا هدفي بالبحثِ عنْ أنواعٍ مُعيَّنةٍ (أختارُ كائناتٍ، مثلَ أنواعٍ منْ نباتاتٍ صغيرةٍ).
 - 3. أضعُ المُربَّعَ على قطعةٍ منَ الأرضِ، توجدُ فيها نباتاًتُ مختلفةٌ.
- 4. أُدوِّنُ ما أشاهدُهُ في قائمةٍ تتضمَّنُ عددَ أنواعِ النباتاتِ، وعددَ الأفرادِ منْ كلِّ نوعٍ موجودٍ داخلَ كلِّ منَ المُربَّعاتِ الأربعةِ، علمًا بأنَّ كلَّ مُربَّعِ يُمثِّلُ مجتمعًا، وأنَّهُ يُمكِنُ التقاطُ صورٍ لأنواعِ النباتاتِ التي شاهدْتُها.


صورُ العيِّناتِ	عددُ الأفرادِ الكليُّ	العددُ	النوعُ	رقمُ المجتمعِ الحيويِّ
			Î	
			J.	1
			ج	
			ĺ	
			ب	2
			ح	
			ĺ	
			ب	3
			ج	
			ĺ	
			٠	4
			ج	

5. أُدوِّنُ أعدادَ كائناتٍ أخرى، مثلَ: دودةِ الأرضِ، والنملِ في المجتمعاتِ الحيويةِ التي درستُها.

التحليلُ والاستنتاجُ: أُقارِنُ نتائجَ مجموعتي بنتائجِ المجموعاتِ الأُخرى.

أسئلةُ اختبارات دولية أوْ على نمطها

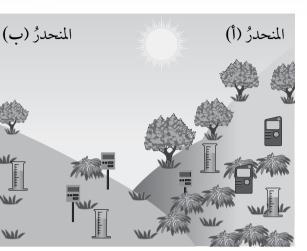
دراسة المنحدرات

لاحظَتْ مجموعةٌ منَ الطلبةِ وجودَ اختلافٍ كبير في الغطاءِ النباتيِّ على منحدري أحدِ الأوديةِ؛ إذْ كانَ الغطاءُ النباتيُّ في المنحدر (أ) أكثر اخضرارًا وكثافةً منه في المنحدر (ب)، أنظرُ الشكلَ المجاورَ.

استقصى الطلبة سبب هذا الاختلاف الكبير في الغطاء النباتيِّ بينَ المنحدرين. واستكمالًا لهذا الاستقصاء، قاسَ الطلبةُ العواملَ البيئيةَ الثلاثةَ الآتيةَ في مدَّةٍ زمنيةٍ مُعيَّنةٍ:

- الإشعاعُ الشمسيُّ: كمِّيةُ أشعةِ الشمسِ التي تصلُ الموقعَ.
 - رطوبةُ التربةِ: نسبةُ رطوبةِ التربةِ في الموقع.
- متوسطُ (مُعدَّلُ) هطلِ الأمطارِ: كمِّيةُ الأمطارِ التي تهطلُ على الموقع.

وضعَ الطلبةُ على كلِّ منحدرٍ جهازينِ منْ كلِّ نوعٍ منَ الأجهزةِ الثلاثةِ الآتيةِ:


مقياسُ الإشعاعِ الشمسيِّ: قياسُ كمِّيةِ أشعةِ الشمسِ باستخدامِ وحدةِ ميغاجول لكلِّ مترٍ مُربَّع (MJ/m²).

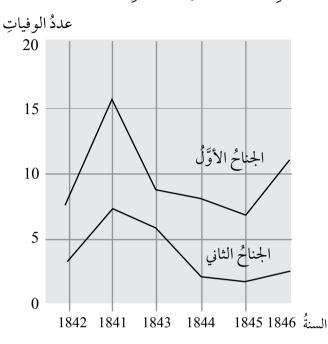
مقياسُ رطوبةِ التربةِ: قياسُ كمِّيةِ الماءِ بإيجادِ نسبةِ الماءِ المئويةِ منْ حجمِ التربةِ.

مقياسُ هطلِ الأمطارِ: قياسُ كمِّيةِ الأمطارِ الهاطلةِ بالملِّيمترِ (mm).

حسبَ الطلبةُ متوسطَ القياساتِ التي جمعوها من كلِّ زوجٍ من الأجهزةِ على كلِّ منحددٍ في أثناءِ مدَّةٍ زمنيةٍ محددًا نسبةَ الخطأ فيها. بعدَ ذلكَ دَوَّنوا نتائجَهُمْ في الجدولِ الآتي، معتمدينَ علامة (±) لنسبةِ الخطأ:

متوسطُ هطلِ الأمطارِ	متوسطُ رطوبةِ التربةِ	متوسطُ الإشعاعِ الشمسيِّ	
450 ± 40 mm	28 ± 2%	$3800 \pm 300 \text{ MJ/m}^2$	المنحدرُ (أ):
440 ± 50 mm	18 ± 3%	$7200 \pm 400 \text{ MJ/m}^2$	المنحدرُ (ب):

السؤالُ الأوَّلُ:


في أثناءِ استقصاءِ الاختلافِ في الغطاءِ النباتيِّ بينَ المنحدرينِ، لماذا وضعَ الطلبةُ جهازينِ منْ كلِّ نوعِ على كلا المنحدرينِ؟

السؤالُ الثاني:

لمُ يُوافِقِ اثنانِ من الطلبةِ على سببِ الاختلافِ في رطوبةِ التربةِ بينَ المنحدرينِ؛ إذِ اعتقدَ الطالبُ الأوَّلُ أنَّ الاختلافَ في رطوبةِ التربةِ يعودُ إلى الاختلافِ في الإشعاعِ الشمسيِّ على كلِّ من المنحدرينِ. أمّا الطالبُ الثاني فرأى أنَّ هذا الاختلافَ مردُّهُ إلى الاختلافِ في كمِّيةِ الأمطارِ الهاطلةِ على كلِّ من المنحدرينِ.

استنادًا إلى البياناتِ المعطاةِ، أيُّ الطالبينِ على صوابٍ، مُبرِّرًا إجابتي؟

عددُ وفياتِ حُمّى النِّفاس لكلِّ مئةِ ولادةِ

أشارَ ساميلويس Semmelweis (1816–1865م) في يومياتِ إلى حُمِّ على النِّف اسِ التي تُعَدُّ مرضًا مُعْدِيًا أودى بحياةِ كثيرٍ من النساءِ بعد مُعْدِيًا أودى بحياةِ كثيرٍ من النساءِ بعد وَضْعِهِنَّ الأطفالَ. جمع ساميلويس بياناتٍ عنْ أعدادِ الوفياتِ في الجناحِ الأوَّلِ والجناحِ الثاني في عيادةِ الوفياتِ في مستشفى فيينا العام، أنظرُ في عيادةِ الولادةِ في مستشفى فيينا العام، أنظرُ الشكل، لكنَّهُ لمْ يتوصَّلْ هو والأطبّاءُ إلى تعرُّفِ أسبابِ مرضِ حُمِّ النِّفاسِ، وقد أشارَ إلى أسبابِ مرضِ حُمِّ النِّفاسِ، وقد أشارَ إلى ذلكَ في يومياتِ في ومياتِ في قائلًا:

«كانونُ الأوَّلُ 1846م، لماذا يموتُ هذا العددُ منَ النساءِ بسببِ هذهِ الحُمِّى بعدَ ولاداتٍ تخلو منْ أَيَّةِ مشكلاتٍ؟ لقرونٍ عِدَّةٍ، أخبرَنا العلمُ أنَّ وباءً غامضًا يقتلُ الأُمَّهاتِ، وأنَّ أسبابَهُ قدْ تكونُ تغييرًا في الهواءِ، أوْ زلازلَ، أوْ تأثيراتٍ منْ خارج الأرضِ».

في أيامِنا هذه، قليلٌ هم الذين ينظرون إلى الزلازلِ أو التأثيراتِ منْ خارجِ الأرضِ بوصفِها أسبابًا مُحتمَلةً للحُمّى. نحنُ نعرفُ الآنَ أنَّ لذلكَ صلةً ببعضِ الأحوالِ الصحيةِ، خلافًا لِما كانَ سائدًا في العصرِ الذي عاشَ فيهِ ساميلويس؛ إذْ عَدَّها كثيرٌ منَ الناسِ والعلماءِ أسبابًا مُحتمَلةً للحُمّى. بالرغم منْ ذلكَ أيقنَ ساميلويس أنَّهُ منْ غيرِ المُحتمَلِ أنْ تكونَ هذهِ التأثيراتُ أو الزلازلُ سببًا للإصابةِ بالحُمّى، مُعزِّزًا رأيهُ بالبياناتِ التي جمعَها في الشكلِ، واستخدمَها في محاولة إقناعِ زملائِه بوجهةِ نظره.

الأوَّلُ:	السؤالُ
•	_

لنِّفاسِ، مُبرِّرًا إجابتي؟	س، لماذا لا تُعَدُّ الزلازلُ سببًا لحُمِّى اا	مُعتمِدًا البياناتِ التي جمعهَا ساميلوي

السؤالُ الثاني:

يومياتُ ساميلويس (2)

كانَ التشريحُ جزءًا منَ البحثِ في المستشفى لمعرفةِ سببِ الوفاةِ. وقدْ كتبَ ساميلويس في يومياتِهِ أَنَّ الطلبةَ الذينَ يعملونَ في الجناحِ الأوَّلِ شاركوا في تشريحِ جثثِ النساءِ اللاتي تُوفِّينَ في اليومِ السابقِ قبلَ فحصِ النساءِ اللاتي وضعْنَ حَمْلَهُنَّ هذهِ اللحظة، ولمْ يحفلوا كثيرًا بتنظيفِ أنفسِهِمْ السابقِ قبلَ فحصِ النساءِ اللاتي وضعْنَ حَمْلَهُنَّ هذهِ اللحظة، ولمْ يحفلوا كثيرًا بتنظيفِ أنفسِهِمْ بعدَ عملياتِ التشريح، حتّى إنَّ بعضَهُمْ كانوا يتباهونَ أمامَ زملائِهِمْ بالرائحةِ التي عَلِقَتْ بِمِمْ، ودلَّتُ على عملِهِمْ في المشرحةِ؛ لأنَّ ذلكَ هوَ دليلُ العملِ الجادِّ برأيمِمْ.

تُوفِي أحدُ أصدقاءِ ساميلويس بعدما جرحَ نفسَهُ في أثناءِ عمليةِ تشريحٍ. وقدْ أظهرَتِ النتائجُ الني تلَتْ عملية تشريحٍ جُثَّةِ الصديقِ وجودَ بعضِ الأعراضِ المُشابِهِ لتلكَ التي تصيبُ النساءَ الله يَ تُوفِّينَ بسببِ حُتَّى النَّفاسِ؛ ما أوحى إلى ساميلويس بفكرةٍ جديدةٍ؛ وهي فكرةٌ تتعلَّقُ بنسبةِ الوفياتِ المرتفعةِ بينَ النساءِ في جناحيْ قسم التوليدِ، وبسلوكِ الطلبةِ.

أيُّ الآتيةِ تُمثِّلُ هذهِ الفكرةَ:

- أ) اهتمامُ الطلبةِ بتنظيفِ أنفسِهِمْ بعدَ عملياتِ التشريح سيُقلِّلُ منْ نسبةِ الإصابةِ بحُمّى النِّفاسِ.
 - ب) منعُ الطلبةِ منَ المشاركةِ في عملياتِ التشريح؛ لكيلا يجرحوا أنفسَهُمْ.
 - جـ) فَوْحُ رائحةٍ منَ الطلبةِ؛ لأنَّهُمْ لا يُنظِّفونَ أنفسَهُمْ بعدَ عملياتِ التشريحِ.
 - د) إظهارُ الطلبةِ الجدُّ في العملِ؛ ما يجعلُهُمْ غيرَ مُكترِثينَ في أثناءِ عملياتِ التشريحِ.

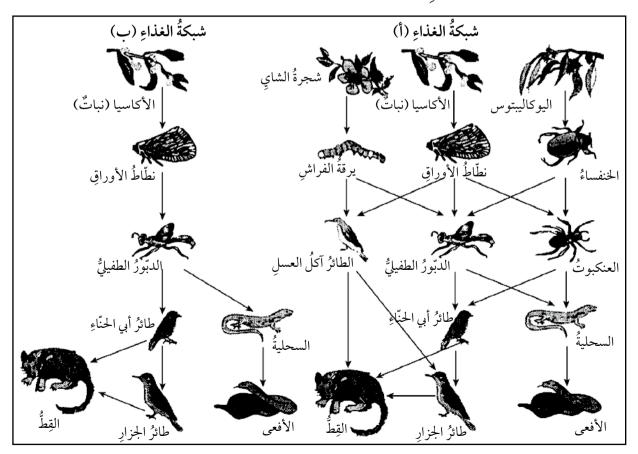
نجح ساميلويس في محاولاتِ وتقليلَ عدد الوفياتِ الناتجة منْ مرضِ مُمّى النّفاسِ، لكنّ هذا المرضَ ما يزالُ مُنتشِرًا حتّى يومِنا هذا. والحقيقةُ أنّ أنواعَ الحُمّى التي يصعبُ علاجُها ما تزالُ مُشكلةً تعانيها المستشفياتُ، بالرغم منْ وجودِ جُمْلةٍ منَ الإجراءاتِ الاعتياديةِ (الروتينيةِ) المُتّبعَةِ التي تضبطُ هذهِ المشكلةِ، مثلِ غسلِ الشراشفِ والأغطيةِ في درجاتِ حرارةٍ عاليةٍ.

السؤالُ الثالثُ:

.رجاتِ الحرارةِ العاليةِ في أثناءِ عمليةِ الغسلِ على تقليلِ احتمالِ	أُوضِّحُ: لماذا يساعدُ استخدامُ د
	إصابةِ المرضى بالخُمّى؟

السؤالُ الرابعُ:

يُمكِنُ معالجةُ كثيرٍ منَ الأمراضِ باستخدامِ المضاداتِ الحيويةِ. ولكنْ، لوحِظَ في السنواتِ المحيرةِ محدوديةُ فاعليةِ بعضِ المضاداتِ الحيويةِ في معالجةِ حُمّى النّفاسِ. أيُّ الآتيةِ تُمثّ لُ سببَ ذلك:


- أ) فقدانُ المضاداتِ الحيويةِ فاعليتَها تدريجيًّا بعدَ مدَّةٍ منْ إنتاجِها.
 - ب) مقاومةُ البكتيريا للمضاداتِ الحيويةِ.
- جـ) إسهامُ المضاداتِ الحيويةِ في مقاومةِ مرضٍ حُمَّى النِّفاسِ فقطْ.
- د) تراجعُ استخدامِ المضاداتِ الحيويةِ؛ نظرًا إلى التحسُّنِ الكبيرِ في الصحةِ العامةِ اليومَ.

التنوُّعُ الحيويُّ مفتاحُ استمرارِ الحياةِ على سطح الأرضِ

النظامُ البيئيُّ الذي يحتفظُ بتنوُّع حيويٍّ كبير (أيْ بمجموعةٍ مُتنوِّعةٍ منَ الكائناتِ الحيَّةِ) هوَ أكثرُ احتمالية للتكيُّفِ مع تغيُّرِ البيئةِ الذي يُحُدِثُهُ الإنسانُ مقارنة بالنظامِ البيئيِّ الذي يكونُ فيهِ التنوُّعُ الحيويُّ مُنخفِضًا. أُلاحِظُ منْ شبكتيِ الغذاءِ في الرسمِ التخطيطيِّ التالي أنَّهُما بسيطتانِ مقارنة بشبكاتِ الغذاءِ في الأنظمةِ البيئيةِ تنوُّعًا وأقلِّها تنوُّعًا. الغذاءِ في الأنظمةِ البيئيةِ الحقيقيةِ، وأنَّهُما تُوضِّحانِ الفرق بينَ أكثرِ الأنظمةِ البيئيةِ تنوُّعًا وأقلِّها تنوُّعًا.

تُمُّ لُ شبكةُ الغذاءِ (ب) نظامًا بيئيًّا ذا تنوُّع حيويٍّ مُنخفِضٍ جدَّا؛ ذلكَ أَنَّ المسارَ الغذائيَّ في بعضِ المستوياتِ يتضمَّنُ نوعًا واحدًا فقطْ منَ الكائناتِ الحيَّةِ. أمّا شبكةُ الغذاءِ (أ) فتُمثِّلُ نظامًا بيئيًّا أكثرَ تنوُّعًا؛ ما يُفسِّرُ سببَ وجودِ عديدٍ منْ مساراتِ التغذيةِ البديلةِ.

بوجه عامًّ، يجبُ أَخْذُ فقدانِ التنوُّعِ البيولوجيِّ بالاعتبارِ، ليسَ فقطْ بسببِ الكائناتِ الحيَّةِ التي انقرضَتْ، ومثَّلَ انقراضُها خسارةً كبيرةً، وإنَّما بسببِ الخطرِ الذي يُهدِّدُ الكائناتِ الحيَّةَ المُتبقِّيةَ؛ إذْ إنَّما أصبحَتْ أكثرَ عُرْضةً للانقراضِ مستقبلًا.

السؤالُ الأوَّلُ:

وردَ في النصِّ ما يأتي: «أمّا شبكةُ الغذاءِ (أ) فتُمثِّلُ نظامًا بيئيًّا أكثرَ تنوُّعًا؛ ما يُفسِّرُ سببَ وجودِ عديدٍ منْ مساراتِ التغذيةِ البديلةِ». يوجدُ في شبكةِ الغذاءِ (أ) حيوانانِ فقطْ يتغذَّيانِ بثلاثةِ حيواناتٍ مباشرةً بوصفِها مصادرَ للغذاءِ. هذانِ الحيوانانِ هما:

- أ) القِطُّ، والدبّورُ الطفيليُّ.
- ب) القِطُّ، وطائرُ الجزارِ.
- ج) الدبور، ونطاط الأوراقِ.
 - د) الدبورُ، والعنكبوتُ.
- هـ) القِطُّ، والطائرُ آكلُ العسل.

السؤالُ الثاني:

توجدُ شبكةُ الغذاءِ (أ) وشبكةُ الغذاءِ (ب) في موقعينِ مختلفينِ. إذا افترضْتُ أنَّ نطّاطَ الأوراقِ ماتَ في كلا الموقعينِ، فإنَّ أفضلَ تنبُّؤٍ وتفسيرٍ لتأثيرِ ذلكَ في شبكاتِ الغذاءِ هوَ:

- أ) ستتأثَّرُ شبكةُ الغذاءِ (أ) أكثرَ؛ لأنَّ للدبّور الطفيليِّ مصدرَ غذاءٍ واحدًا فقطْ في هذهِ الشبكةِ.
- ب) ستتأثَّرُ شبكةُ الغذاءِ (أ) أكثرَ؛ لأنَّ للدبُّورِ الطفيليِّ عديدًا منْ مصادرِ الغذاءِ في هذهِ الشبكةِ.
- جـ) ستتأثَّرُ شبكةُ الغذاءِ (ب) أكثرَ؛ لأنَّ للدبّورِ الطفيليِّ مصدرَ غذاءٍ واحدًا فقطْ في هذهِ الشبكةِ.
 - د) ستتأثَّرُ شبكةُ الغذاءِ (ب) أكثرَ؛ لأنَّ للدبُّورِ الطفيليِّ عديدًا منْ مصادرِ الغذاءِ في هذهِ الشبكةِ.

حراسة خلايا نباتية وحيوانية باستخدام المجهر الضوئي المُركُب

تجربة استهلالية

الخلفيةُ العلميةُ:

تُصنَّفُ الخليةُ بحسب وجودِ النواةِ إلى نوعينِ، هما: الخليةُ بدائيةُ النواةِ، والخليةُ حقيقيةُ النواةِ. تنتمي الخلايا النباتيةُ والخلايا الحيوانيةُ إلى حقيقياتِ النواةِ التي تشتركُ معًا في تراكيبَ عِـدَّةٍ، وتوجـدُ تراكيبُ تختـصُّ بها كلُّ مـنَ الخلايا النباتيةِ، والخلايا الحيوانيةِ.

الهدفُ:

دراسةُ تركيبِ كلِّ منَ الخليةِ النباتيةِ، والخليةِ الحيوانيةِ باستخدام المِجهَرِ الضوئيِّ المُركَّبِ.

الموادُّ والأدواتُ:

مِجهَرٌ ضوئيٌّ مُركَّبٌ، شرائحُ زجاجيةٌ جاهزةٌ لكلِّ منْ: خلايا كبدٍ، وخلايا بصلِ، وخلايا عصبيةٍ، وخلايا ورقة نبات، قصاصاتٌ ورقيةٌ بيضاءُ.

إرشاداتُ السلامةِ: استعمالُ أدواتِ التجربةِ بحذرِ.

خطواتُ العمل:

- 1. أُغطِّي الاسمُ المكتوبَ على كلِّ شريحةٍ زجاجيةٍ بقصاصةٍ ورقيةٍ بيضاءً.
 - 2. أُرقِّمُ الشرائحَ بالأرقام (1-4).
 - 3. أُجرِّبُ: أَتفحَّصُ الشرائحَ باستخدامِ المِجهَرِ الضوئيِّ المُركَّبِ.

أَلاحِظُ العُضَيّاتِ والتراكيبَ التي يُمكِنُ مشاهدتُها في الشرائحِ باستخدامِ قوَّةِ التكبيرِ المناسبةِ، ثمَّ أُدوِّه	.4
ملاحظاتي.	

5. أرسمُ ما شاهدْتُهُ تحتَ المِجهَرِ.

اسمُ الشريحةِ:

اسمُ الشريحةِ: اسمُ الشريحةِ:

6. أُقارِنُ النتائجَ التي توصَّلْتُ إليْها بالأشكالِ المُرفَقةِ.

خلايا ورقةِ نباتٍ. خلايا بصلٍ.

7. **أتواصلُ**: أُشارِكُ زملائي/ زميلاتي في النتائجِ التي توصَّلْتُ إليْها.

خلايا كبدٍ.

خلايا عصبيةٌ.

التحليلُ والاستنتاجُ:

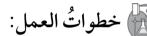
ين و بعض الشرائحَ (1-4) إلى خلايا نباتيةٍ، وأُخرى حيوانيةٍ، مُبيِّنًا الأساسَ الذي اعتمدْتُهُ في عمليةِ التصنيفِ. أُصنِّفُ الشرائحَ (1-4) إلى خلايا نباتيةٍ، وأُخرى حيوانيةٍ، مُبيِّنًا الأساسَ الذي اعتمدْتُهُ في عمليةِ التصنيفِ.
1
2
3
4

تركيبُ الغشاء البلازميِّ وخاصيةُ النفاذية الاختيارية

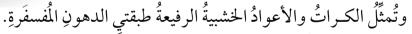
نشاطُّ إثرائيُّ

الخلفيةُ العلميةُ:

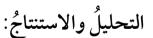
يحيطُ الغشاءُ البلازميُّ بالمُكوِّناتِ الداخليةِ للخليةِ، مُسبِّا عزلها عنْ محيطِها، وهوَ يُسهِمُ في تنظيمِ مرور الموادِّ منَ الخليةِ وإليْها.


الهدفُ:

تصميمُ نموذجٍ يُوضِّحُ تركيبَ الغشاءِ البلازميِّ.


الموادُّ والأدواتُ:

(30) كرةً منْ كراتِ التِّنِسِ أَوْ فِلِينةٌ صغيرةُ الحجمِ، (60) عودًا خشبيًّا رفيعًا، (6) أعوادٍ خشبيةٍ سميكةٍ مُلوَّنةٍ باللونِ الزهريِّ، لاصقُ أَوْ صمغٌ، قطعةٌ منَ الكرتونِ المُقوِّى.


طبقتا الدهونِ الْمُفسفَرةِ

أُجرِّبُ: أُصمِّمُ منَ الكراتِ والأعوادِ الخشبيةِ لَمُودَجًا للغشاءِ البلازميِّ كما في الشكلِ المجاورِ،
 بحيثُ تُمثِّلُ الأعوادُ الخشبيةُ السميكةُ البروتينَ،

2. أعملُ نموذجًا: أُثبِّتُ تصميمي على قطعةٍ منَ الكرتونِ المُقوّى باستعمالِ اللاصقِ أوِ الصمغِ.

أستنتجُ مُكوِّناتِ الغشاءِ البلازميِّ.	.1
 أُفسِّرُ مفهومَ النفاذيةِ الاختياريةِ.	.2

أتنبّا بإمكانية مرور البروتينات كبيرة الحجم عبر الغشاء البلازميّ.

البلاستيداتُ عديمةُ اللون المُخَزِّنةُ للنشا

نشاطُّ إثرائيُّ

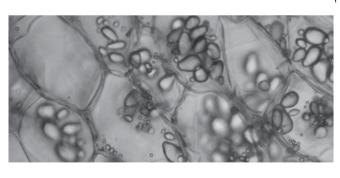
الخلفيةُ العلميةُ:

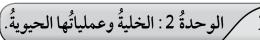
يُعَدُّ النشا أحدَ المُكوِّناتِ التي تتشكَّلُ داخلَ الخليةِ النباتيةِ، ويكونُ في صورةِ حبيباتٍ، ويُخزَّنُ في البلاستيداتِ عديمةِ اللونِ.

الهدفُ:

مشاهدةُ البلاستيداتِ عديمةِ اللونِ المُخزِّنةِ للنشا.

الموادُّ والأدواتُ:


حبَّةُ بطاطا، محلولُ لوغول، سكِّينُ تشريحٍ، شريحةٌ فارغةٌ، أغطيةُ شرائحَ، مِجِهَرٌ ضوئيٌّ مُركَّبٌ، ماءٌ، قضّازاتٌ، قطّارةٌ.


إرشاداتُ السلامةِ:

- استعمالُ السكِّين ومحلولِ لوغول بحذر.
 - ارتداءُ القفّازاتِ في أثناءِ تنفيذِ النشاطِ.

خطواتُ العملِ:

- 1. أُجرِّبُ: أُحضِّرُ شريحةً رقيقةً جدًّا منَ البطاطا، ثمَّ أضعُها على الشريحةِ الفارغةِ.
 - 2. أضعُ عليْها قطرةً صغيرةً منْ محلولِ لوغول.
 - 3. أضعُ غطاءَ الشريحةِ على العيِّنةِ.
 - أتفحَّصُ الشريحة باستخدام المجهر الضوئيً المُركَّب، ثمَّ أُقارِئُها بها في الشكلِ المجاور.

(6

نشاط

حراسة أثر حرجة الحرارة في عملية الانتشار

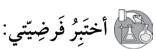
الخلفيةُ العلميةُ:

تنتشرُ جزيئاتُ المادةِ منْ الوسطِ الأكثرِ تركيزًا بجزيئاتِ المادةِ إلى الوسطِ الأقلِّ تركيزًا بها. وتوجدُ عواملُ عديدةٌ تُؤتِّرُ في عمليةِ الانتشارِ، منْها درجةُ الحرارةِ.

الهدفُ:

دراسةُ أثر درجةِ الحرارةِ في عمليةِ الانتشار.

الموادُّ والأدواتُ:


(3) أنابيبِ اختبارٍ، (3) قطع منَ الشمندرِ أبعادُها (2cm x 1cm)، حاملُ أنابيبَ، ماءٌ مُقطَّرٌ، حمّامٌ مائيٌّ.

أصوغُ فرضيتي عن أثرِ دَرجةِ الحَرارةِ في عَمليّةِ الانتِشار.

و إرشاداتُ السلامةِ:

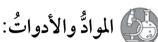
- استعمالُ الماءِ الساخنِ بحذرٍ.
- الحذرُ منَ انسكابِ صبغاتٍ منَ الشمندرِ على الملابسِ أو الأرضِ.

- 1. أضعُ 15 mL من الماءِ المُقطِّر في كلِّ من الأنابيب الثلاثةِ، ثمَّ أُرقِّمها بالأرقام (1-3).
- 2. أُجرِّبُ: أضعُ الأنبوبَ رقمَ (1) في درجةِ حرارةِ الغرفةِ، ثمَّ أضعُ الأنبوبَ رقمَ (2) في حمّام مائيٍّ درجةُ حرارتِهِ °C، ثمَّ أضعُ الأنبوبَ رقمَ (3) في حمّام مائيٍّ درجةُ حرارتِهِ °C 90.
 - 3. أضعُ قطعةً منَ الشمندر في كلِّ أنبوب.
 - 4. أُراقِبُ لونَ الماءِ (المحتوياتُ السائلةُ في كلِّ أنبوب) مدَّةَ min 5.

حليلُ والاستنتاجُ : أُ قارِنُ لونَ الماءِ في الأنابيبِ الثلاثةِ.) الت 1.
أستنتجُ أثرَ درجةِ الحرارةِ في عمليةِ الانتشارِ.	.2
أ تواصلُ : أُناقِشُ زملائي/ زميلاتي في النتائجِ التي توصَّلْتُ إليْها.	.3

4. أُصِدِرُ حُكمًا: أُوضِّحُ ما إذا كانت نتائجي تتوافق مع فرضيتي.

دراسةُ أثر تراكيزَ مختلفة منْ محلول الغلوكوز في كتلة البطاطا


نشاطُ إثرائيُّ

الخلفيةُ العلميةُ:

تتحرَّكُ جزيئاتُ الماءِ - بحسبِ الخاصيةِ الأسموزيةِ - من الوسطِ الأقلِّ تركيزًا بالمادةِ المُذابةِ إلى الوسطِ الأكثرِ تركيزًا بها.

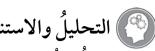
الهدفُ:

دراسةُ أثرِ تراكيزَ مختلفةٍ منْ محلولِ الغلوكوزِ في كتلةِ البطاطا.

(6) أنابيبِ اختبارٍ متساويةِ الحجمِ، (6) قطعٍ منَ البطاطا متساويةِ الكتلةِ، محاليلُ منْ سُكَّرِ الغلوكوزِ ذاتُ تراكيزَ مختلفةٍ g/mL (0.2) g/mL)، ماءٌ مُقطَّرٌ، ميزانٌ، ورقُ تجفيفٍ، حاملُ أنابيبَ.

إرشاداتُ السلامةِ:

- استعمالُ الأنابيب الزجاجيةِ بحذرٍ.
- غسلُ الأيدي جيدًا بعدَ الانتهاءِ منَ التجربةِ.


ملحوظةٌ: تُحسَبُ النسبةُ المئويةُ للتغيُّرِ في الكتلةِ بالعلاقةِ الآتيةِ:

خطواتُ العملِ:

- 1. أُجرِّبُ: أضعُ أنابيبَ الاختبارِ في حاملِ الأنابيبِ بعدَ ترقيمِها بالأرقامِ (1-6).
- 2. أضعُ mL من الماءِ المُقطَّرِ في الأنبوبِ رقمِ (1)، ثمَّ أضعُ في بقيةِ الأنابيبِ محاليلَ سُكَّرِ العلوكوزِ ذاتَ التراكيزِ المختلفةِ مُرتَّبةً كما في الجدولِ الآتي:

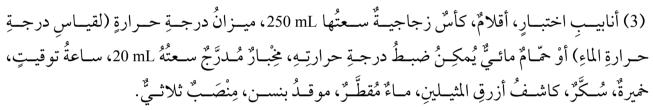
النسبةُ المئويةُ للتغيُّرِ في الكتلةِ (100%)	الكتلةُ النهائيةُ	تركيزُ الغلوكوز (mol/dm³)
		0.0
		0.2
		0.4
		0.6
		0.8
		1.0

- 3. أضعُ قطعةً منَ البطاطا في كلِّ أنبوبٍ، ثمَّ أتركُها مدَّةَ 3 ساعاتٍ.
- 4. أُخرِجُ قطعَ البطاطا منَ الأنابيب، ثمَّ أُجفِّفُها بورقِ التجفيفِ. بعدَ ذلكَ أَزِنُ كلَّ قطعةٍ، ثمَّ أُدوِّنُ وزنها.
- 5. أُلاحِظُ التغيَّرُ في كتلِ البطاطا، ثمَّ أجدُ النسبةَ المئويةَ للتغيُّرِ في كتلةِ كلِّ قطعةٍ منْ قطعِ البطاطا بحسبِ المحلولِ الذي وُضِعَتْ فيهِ.
 - 6. أُدوِّنُ النتائجَ التي توصَّلْتُ إليْها في الجدولِ السابقِ.

حليل والاستنتاج: أُقارِنُ أثرَ تركيزِ المحاليلِ في كتلِ قطعِ البطاطا.	الت 1.
أستنتجُ أثرَ الخاصيةِ الأسموزيةِ في تغييرِ الكتلةِ النسبيةِ.	.2
أُفسِّرُ معنى النتائج ذاتِ القيمةِ السالبةِ.	.3
أرسمُ رسمًا بيانيًّا يُوضِّحُ أثرَ تركيزِ المحلولِ في كتلةِ كلِّ منْ قطعِ البطاطا.	.4

أتواصل: أُناقِشُ زملائي/ زميلاتي في النتائجِ التي توصَّلْتُ إليْها.

نشاطٌ إثرائيُّ


الخلفيةُ العلميةُ:

تُعَدُّ عمليةُ التنفُّسِ الخلويِّ الهوائيِّ مثالًا على عملياتِ الهدمِ، ويُقصَدُ بها إنتاجُ الطاقةِ منَ الغذاءِ بوجودِ الأكسجينِ المتخدامِ كاشفِ أزرقِ المثلينِ الذي يختفي لونُهُ عندَ استهلاكِ الأكسجينِ.

الهدفُ:

اختبارُ أثرِ درجةِ الحرارةِ في مُعدَّلِ عمليةِ التنفُّسِ الخلويِّ.

الموادُّ والأدواتُ:

أصوغُ فرضيتي عن أثر درجةِ الحرارةِ في مُعدّلِ عمليّةِ التنفُّسِ الخلوِيّ.

ارشاداتُ السلامةِ:

استعمالُ موقدِ بنسن بحذرِ.

أختَبِرُ فَرضِيّتي:

- 1. أُجرِّبُ: أُرقِّمُ الأنابيبَ بالأرقامِ (1-3).
- 2. أُجرِّبُ: أضعُ الماءَ والسُّكَّرَ والخَميرةَ في الأنابيبِ كما في الجدولِ الآتي:

عددُ نقاطِ كاشفِ أزرقِ المثيلينِ	كتلةُ الخميرةِ (g)	كتلةُ السُّكَّرِ (g)	حجمُ الماءِ (mL)	رقمُ الأنبوبِ
2	1	-	20	1
2	1	0.5	20	2
2	1	0.5	20 (ماءٌ مغليٌّ)	3

- 3. أُجرِّبُ: أضعَ الأنابيبَ في حمّام مائيٍّ ضُبِطَتْ درجةُ حرارتِهِ على ℃ 25.
- 4. أُجرِّبُ: أحسُبُ الزمنَ اللازمَ لاختفاءِ اللونِ الأزرقِ منَ الأنبوبِ رقمِ (2).
- 5. أُكرِّرُ الخطواتِ (1-4) باستخدام حمَّام مائيٍّ درجةُ حرارتِهِ على الترتيبِ: ℃ ،30 ℃ ،40 ℃ ،45 ℃ ،50 ℃ ° 55، ثمَّ أُدوِّنُ النتائجَ التي توصَّلْتُ إليْها في الجدولِ الآتي:

الزمنُ اللازمُ لاختفاءِ لونِ المحلولِ (s)	درجةُ الحرارةِ
	25 °C
	30 °C
	35 °C
	40 °C
	45 °C
	50 °C

6. أحسُبُ مُعدَّلَ عمليةِ التنفُّسِ الخلويِّ باستخدامِ المعادلةِ الآتيةِ:

بعدَ ذلكَ أُدوِّنُ النتائجَ التي توصَّلْتُ إليْها في الجدولِ الآتي:

مُعدَّلُ عمليةِ التنفُّسِ الخلويِّ (S-1)	الزمنُ اللازمُ لاختفاءِ لونِ المحلولِ	درجةُ الحرارةِ
	(s)	
		25 °C
		30 °C
		35 °C
		40 °C
		45 °C
		50 °C

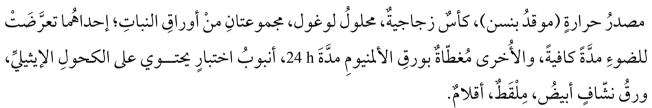
36 / الوحدةُ 2: الخليةُ وعملياتُها الحيويةُ.)

التحليلُ والاستنتاجُ:

التحليل والاستنتاج: 1. أُوضِّحُ أهميةَ استخدامِ الأنبوبِ رقمِ (1)، والأنبوبِ رقمِ (2)، وكاشفِ أزرقِ المثيلينِ.
 2. أُمثِّلُ بيانيًّا العلاقةَ بينَ درجةِ الحرارةِ ومُعدَّلِ عمليةِ التنفُّسِ الخلويِّ.
 أُوضِّحُ العلاقةَ بينَ درجةِ الحرارةِ ومُعدَّلِ عمليةِ التنفُّسِ الخلويِّ.
4. أُصدِرُ حُكمًا: أُوضَحُ ما إذا كانت نتائجي تتوافق مع فرضيتي.

نشاط إثرائي

الكشفُ عن النشا


الخلفيةُ العلميةُ:

تحدثُ عمليةُ البناءِ الضوئيِّ في الخلايا النباتيةِ الخضراءِ؛ ما يؤدّي إلى إنتاج سُكَّرِ الغلوكوزِ الذي يُخزَّنُ الفائضُ منه في صورة نشا.

الهدف:

الكشفُ عنْ وجودِ النشا للاستدلالِ على قيام النباتِ بعمليةِ البناءِ الضوئيِّ.

إلى الموادُّ والأدواتُ:

ملحوظةٌ: عدمُ الإكثارِ منْ جمع أوراقِ النباتِ.

إرشاداتُ السلامةِ:

- استعمالُ موقدِ بنسن بحذرِ.
- الحذرُ منْ تعرُّض الكحولِ الإيثيليِّ للتسخينِ المباشرِ.

خطواتُ العمل:

- 1. أضعُ أوراقَ النباتِ التي تعرَّضَتْ للضوءِ مدَّةً كافيةً في ماءٍ يغلي مدَّةَ ع 30.
- 2. أُخرِجُ هذهِ الأوراقَ منَ الماءِ، ثمَّ أضعُها في أنبوب الاختبارِ الذي يحتوي على الكحولِ الإيثيليِّ، ثمَّ أضعُ الأنبوبَ في الماءِ المغليِّ حتىّ يختفيَ اللونُ الأخضرُ منَ الأوراقِ.
 - 3. أُخرِجُ الأوراقَ باستخدام المِلْقَطِ، ثمَّ أغسلُها، ثمَّ أضعُها على ورقةِ نشَّافٍ.
 - 4. أُضيفُ بضعَ قطراتٍ منْ محلولِ لوغول إلى أوراقِ النباتِ، ثمَّ أُدوِّنُ ملاحظاتي.
 - 5. أُكرِّرُ الخطواتِ (1-5) باستخدامِ أوراقِ النباتِ المُغطَّاةِ بورقِ الألمنيوم، ثمَّ أُدوِّنُ ملاحظاتي.

اك	

التحليلُ والاستنتاجُ:

لميل والاستنتاج. فسّرُ سببَ وضعِ أوراقِ النباتِ في الماءِ المغليِّ.	التح 1. أُ
أُفسِّرُ سببَ وضعِ أوراقِ النباتِ في الكحولِ الإيثيليِّ.	
فسِّرُ النتيجةَ التي توصَّلْتُ إليْها عندَ وضعِ قطراتٍ منْ محلولِ لوغول على أوراقِ النباتِ في الخطوةِ رقمِ (4).	
ستنتجُ أثرَ الضوءِ في عمليةِ البناءِ الضوئيِّ.	i .4
	•

أسئلةُ اختبارات حولية أوْ على نمطها

السؤالُ الأوَّلُ:

شاهدَ أحدُ الطلبةِ صورةً لخليةٍ حقيقيةِ النواةِ تحتَ المِجهَرِ، لكنَّهُ لم يستطع تحديدَ إذا كانتِ الخليةُ نباتيةً أوْ حيوانيةً، علمًا بأنَّ هذهِ الخلية تحوي التركيبَ الظاهرَ في الشكل المجاور:

1. أستنتجُ نوعَ الخليةِ التي شاهدَها الطالبُ، مُبيِّنًا كيفَ توصَّلْتُ إلى ذلكَ.

2. أتوقَّعُ عُضَيّاتٍ وتراكيبَ لا توجدُ في هذا النوع منَ الخلايا.

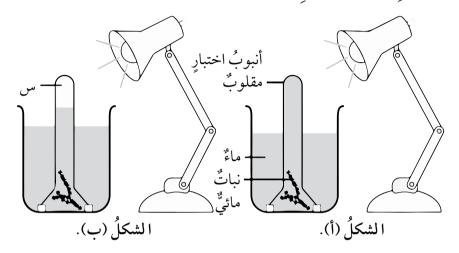
3. أتوقَّعُ بمصيرِ الخليةِ الحيَّةِ إذا توقَّفَتِ النُّويَّةُ عنْ تكوينِ الرايبوسوماتِ لسببِ ما.

4. أتوقَّعُ أثرَ حدوثِ خللِ في الغشاءِ المحيطِ بالجسم الحالِّ في الخليةِ.

/ الوحدةُ 2: الخليةُ وعملياتُها الحيويةُ.)

	>
الثاني:	السؤال

استخدمَتْ طالبةٌ المِجهَرَ الضوئيَّ المُركَّبَ لمشاهدةِ شريحةٍ حضَّرَتْها في المختبرِ لخلايا الدم، وذلكَ بوضع قطرةٍ منَ المداءِ فوقها، لكنَّ الطالبة لم تستطع مشاهدة أيِّ منْ خلايا الدمِ الحمراءِ، وإنَّما شاهدَتْ أجزاءً منَ الغشاءِ البلازميِّ في سائلٍ أحمر:

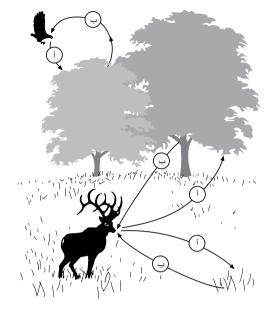

1. أُفسِّرُ سببَ عدمِ قدرةِ الطالبةِ على مشاهدةِ خلايا الدمِ الحمراءِ.

2. أستنتجُ نوعَ المحلولِ الذي وُضِعَتْ فيهِ خلايا الدم الحمراءُ منْ حيثُ التركيزُ.

الوحدةُ 2: الخليةُ وعملياتُها الحيويةُ. 41

السؤالُ الثالثُ:

يُبيِّنُ الشكلانِ الآتيانِ أدواتٍ استخدمَها طلبةٌ لتنفيذِ تجربةٍ في المختبرِ؛ إذْ عملوا على مل أنبوبِ الاختبارِ المقلوبِ بالماءِ في بدايةِ التجربةِ كما في الشكلِ (أ). وبعد بضع ساعاتٍ، لاحظوا انخفاضَ مستوى الماءِ في الأنبوب كما في الشكل (ب):

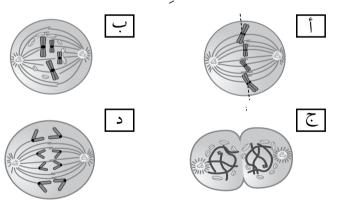

الذي يوجدُ فوقَ سطحِ الماءِ في الأنبوبِ، ضمنَ الجزءِ المشارِ إليهِ بالحرفِ (س) في الشكلِ (ب)، هوَ:

- 1. الأكسجينُ.
 - 2. الماءُ.
- 3. غازُ ثاني أكسيدِ الكربونِ.
 - 4. الفراغُ.
 - أُفسِّرُ إجابتي.

.....

السؤالُ الرابعُ:

يُظهِرُ الرسمُ التخطيطيُّ المجاورُ إحدى العلاقاتِ التي تربطُ بينَ الكائناتِ الحيَّة؛ إذْ تعملُ هذهِ الكائناتُ في النهارِ على استخدامِ (أ) أوْ (ب)، أوْ إلى ذلكَ الأسهمُ.

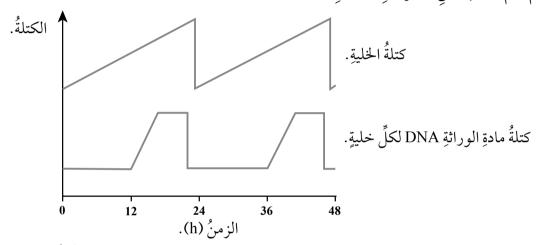


إحدى الآتيةِ تُمثِّلُ (أ) وَ(ب) في الرسم التخطيطيِّ السابقِ:

- 1. (أ) هوَ غازُ ثاني أكسيدِ الكربونِ، وَ(ب) هوَ النيتروجينُ.
- 2. (أ) هوَ الأكسجينُ، وَ(ب) هوَ غازُ ثاني أكسيدِ الكربونِ.
- 3. (أ) هوَ غازُ ثاني أكسيدِ الكربونِ، وَ(ب) هوَ بخارُ الماءِ.
- 4. (أ) هو غازُ ثاني أكسيدِ الكربونِ، وَ(ب) هو الأكسجينُ.

السؤالُ الخامسُ:

يُبيِّنُ الشكلُ الآتي أربعةَ أطوارٍ منْ مرحلةِ الانقسامِ المُتساوي:

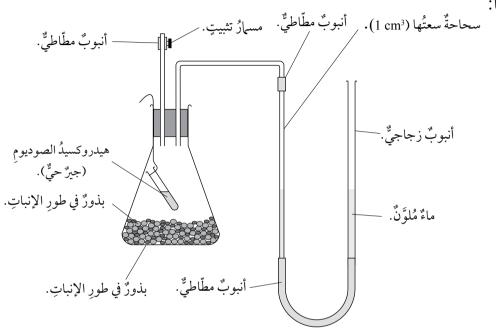


- 1. أُسمّي كُلًّا منَ الأطوارِ الأربعةِ المُمثَّلةِ في الشكلِ السابقِ.
 - الطورُ (أ):
 - الطورُ (ب):......
 - الطورُ (ج):.....

2. أُعيدُ ترتيبَ هذهِ الأطوارِ بحسبِ التسلسلِ الصحيح لحدوثِها.

3. أُصِفُ دورَ الخيوطِ المغزليةِ في حدوثِ الانقسام الخلويِّ.

4. يُمثِّلُ الرسمُ البيانيُّ الآتي التغيُّرَ في كتلةِ مادةِ الوراثةِ DNA، وكتلةِ الخليةِ في دورتينِ خلويتينِ. أدرسُ هذا الرسم، ثمَّ أُجيبُ عن السؤالينِ التاليينِ:



أ- أضعُ الحرفَ D في المكانِ المناسبِ منَ الرسمِ البيانيِّ؛ وهوَ حرفٌ يُمثِّلُ وقتَ حدوثِ تضاعف لمادةِ الوراثةِ DNA.

ب- أضعُ الحرفَ C في المكانِ المناسبِ منَ الرسم البيانيِّ؛ وهوَ حرفٌ يُمثِّلُ وقتَ حدوثِ انقسام للسيتو بالازم.

السؤالُ السادسُ:

صمَّمَتْ مجموعةٌ من الطلبةِ جهازًا كما في الشكلِ الآتي؛ لحسابِ كمِّيةِ الأكسجينِ التي تستهلكُها البذورُ في أثناءِ نموِّها:

في بداية التجربة، تركَ الطلبةُ الأنبوبَ المطّاطيَّ مفتوحًا مدَّةً قصيرةً، ثمَّ أغلقوهُ باستخدامِ مِلْقَطٍ ورقيٍّ، ثمَّ دَوَّنوا القراءةَ الأوَّليةَ على السحاحةِ (1 cm³). بعدَ min (1-5)، رفعوا الأنبوبَ المناجاجيَّ ليتساوى منسوبُ الماءِ اللُمونِ في الأنبوبِ والسحاحةِ، ثمَّ دَوَّنوا قراءةً أُحرى على السحاحةِ (1 cm³)، ولاحظوا أنَّ الفرقَ بينَ القراءتينِ يُمثِّلُ حجمَ غازِ الأكسجينِ الذي استهلكتهُ البذورُ.

التجربةُ رقمُ (2)	التجربةُ رقمُ (1)	
0.48	0.41	القراءةُ الأوَّليةُ المُدوَّنةُ على
		السحاحةِ (cm³):
0.81	0.72	القراءةُ الثانيةُ المُدوَّنةُ على السحاحةِ
		(cm³) بعدَ cm³):

أحسُبُ الفرقَ بينَ القراءةِ الأولى والقراءةِ الثانيةِ في كلتا التجربتينِ. الفرقُ بينَ القراءتينِ في التجربةِ (1)=	.1
الفرقُ بينَ القراءتينَ في التجربةِ (2)= أُفسِّرُ سببَ تركِ الأنبوبِ المطّاطيِّ مفتوحًا مدَّةً قصيرةً في بدايةِ التجربةِ.	.2
أَصِفُ ما حدثَ في هذا النموذجِ في أثناءِ التجربةِ.	.3
أُفسِّرُ سببَ رفعِ الأنبوبِ الزجاجيِّ حتَّى تساوى منسوبُ الماءِ اللَّلوَّنِ فيهِ معَ مستوى الماءِ في السحاحةِ قبلَ تدوينِ القراءةِ الثانيةِ.	.4
أُبيِّنُ كيفَ تُضبَطُ العواملُ في هذهِ التجربةِ، بحيثُ يكونُ الفرقُ ناجًا عنِ استهلاكِ البذورِ الناميةِ للأكسجينِ.	.5